Hermite collocation method for solving Hammerstein integral equations
نویسندگان
چکیده
منابع مشابه
A collocation method for solving integral equations
A collocation method is formulated and justified for numerical solution of the Fredholm second-kind integral equations. As an application the Lippmann-Schwinger equation is considered. The results obtained provide an error estimate and a justification of the limiting procedure used in the earlier papers by the author, dealing with many-body scattering problems in the case of small scatterers, a...
متن کاملA New Collocation - Type Method for Hammerstein Integral Equations
We consider Hammerstein equations of the form y(i)=f(t)+(hk(t,s)g(s,y(s))ds, te[a,b], J a and present a new method for solving them numerically. The method is a collocation method applied not to the equation in its original form, but rather to an equivalent equation for z(t):= g(t,y(t)). The desired approximation to y is then obtained by use of the (exact) equation y(t)=f(t) + fh k(t,s)z(s)ds, ...
متن کاملDegenerate kernel approximation method for solving Hammerstein system of Fredholm integral equations of the second kind
Degenerate kernel approximation method is generalized to solve Hammerstein system of Fredholm integral equations of the second kind. This method approximates the system of integral equations by constructing degenerate kernel approximations and then the problem is reduced to the solution of a system of algebraic equations. Convergence analysis is investigated and on some test problems, the propo...
متن کاملLegendre wavelet method for solving Hammerstein integral equations of the second kind
An ecient method, based on the Legendre wavelets, is proposed to solve thesecond kind Fredholm and Volterra integral equations of Hammerstein type.The properties of Legendre wavelet family are utilized to reduce a nonlinearintegral equation to a system of nonlinear algebraic equations, which is easilyhandled with the well-known Newton's method. Examples assuring eciencyof the method and its sup...
متن کاملCollocation method for solving some integral equations of estimation theory
A class of integral equations Rh = f basic in estimation theory is introduced. The description of the range of the operator R is given. The operator R is a positive rational function of a selfadjoint elliptic operator L. This operator is defined in the whole space R, it has a kernel R(x, y), and Rh := R D R(x, y)h(y)dy, where D ⊂ R is a bounded domain with a sufficiently smooth boundary S. Exam...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: JOURNAL OF ADVANCES IN MATHEMATICS
سال: 2018
ISSN: 2347-1921
DOI: 10.24297/jam.v14i1.6716